and without eddy mass fluxes

A coupled air–sea general circulation model is used to simulate the global circulation. Different parameterizations of lateral mixing in the ocean by eddies, horizontal, isopycnal, and isopycnal plus eddy advective flux, are compared from the perspective of water mass transformation in the Southern...

Full description

Bibliographic Details
Main Authors: Kevin Speer, Eric Guilyardi, Gurvan Madec
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 1999
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.172.9336
http://www.met.rdg.ac.uk/%7Eericg/publications/Speer_al_Tellus00.pdf
Description
Summary:A coupled air–sea general circulation model is used to simulate the global circulation. Different parameterizations of lateral mixing in the ocean by eddies, horizontal, isopycnal, and isopycnal plus eddy advective flux, are compared from the perspective of water mass transformation in the Southern Ocean. The different mixing physics imply different buoyancy equilibria in the surface mixed layer, different transformations, and therefore a variety of meridional overturning streamfunctions. The coupled-model approach avoids strong artificial water mass transformation associated with relaxation to prescribed mixed layer conditions. Instead, transformation results from the more physical non-local, nonlinear interdependence of sea-surface temperature, air–sea fluxes, and circulation in the model’s atmosphere and ocean. The development of a stronger mid-depth circulation cell and associated upwelling when eddy fluxes are present, is examined. The strength of overturning is diagnosed in density coordinates using the transformation framework. 1. Introduction over which the relatively small ageostrophic flows can accumulate. The southward deep flow and