Infrared and sub-millimetre observing conditions on the antarctic plateau

Abstract: The Antarctic Plateau provides the best terrestrial sites for infrared (IR) and submillimetre (sub-mm) astronomy. In this paper we examine the relative importance of temperature, aerosol content and precipitable water vapour to determine which parameters have the greatest influence on atmo...

Full description

Bibliographic Details
Main Authors: Marton G. Hidas, Michael G. Burton, Matthew A. Chamberlain, John W. V. Storey
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2000
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.1385
http://www.atnf.csiro.au/pasa/17_3/hidas/paper.pdf
Description
Summary:Abstract: The Antarctic Plateau provides the best terrestrial sites for infrared (IR) and submillimetre (sub-mm) astronomy. In this paper we examine the relative importance of temperature, aerosol content and precipitable water vapour to determine which parameters have the greatest influence on atmospheric transmission and sky brightness. We use the atmospheric modelling program MODTRAN to model the observed sky spectrum at the South Pole from the near-IR to the sub-mm. We find that temperature and aerosol content determine the quality of near-IR observing conditions, aerosol content is the determining factor in the mid-IR up to 20 µm, while at longer wavelengths, including the sub-mm, it is the water vapour content that matters. Finding a location where aerosol levels are minimised is a key constraint in determining the optimum site on the Antarctic Plateau for an IR observatory.