Nonlinear Processes in Geophysics North Atlantic climate variability in coupled models and data

We show that the observed zonally averaged jet in the Northern Hemisphere atmosphere exhibits two spatial patterns with broadband variability in the decadal and inter-decadal range; these patterns are consistent with an important role of local, mid-latitude ocean–atmosphere coupling. A key aspect of...

Full description

Bibliographic Details
Main Authors: S. K. Kravtsov, W. K. Dewar, M. Ghil, P. S. Berloff, J. C. McWilliams
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2008
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.145.9815
http://www.atmos.ucla.edu/tcd/PREPRINTS/npg-15-13-2008.pdf
Description
Summary:We show that the observed zonally averaged jet in the Northern Hemisphere atmosphere exhibits two spatial patterns with broadband variability in the decadal and inter-decadal range; these patterns are consistent with an important role of local, mid-latitude ocean–atmosphere coupling. A key aspect of this behaviour is the fundamentally nonlinear bi-stability of the atmospheric jet’s latitudinal position, which enables relatively small sea-surface temperature anomalies associated with ocean processes to affect the large-scale atmospheric winds. The wind anomalies induce, in turn, complex three-dimensional anomalies in the ocean’s main thermocline; in particular, they may be responsible for recently reported cooling of the upper ocean. Both observed modes of variability, decadal and inter-decadal, have been found in our intermediate climate models. One