Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models

[1] Stratospheric sulfate aerosol particles from strong volcanic eruptions produce significant transient cooling of the troposphere and warming of the lower stratosphere. The radiative impact of volcanic aerosols also produces a response that generally includes an anomalously positive phase of the A...

Full description

Bibliographic Details
Main Authors: Georgiy Stenchikov, Kevin Hamilton, Ronald J. Stouffer, Alan Robock, V. Ramaswamy, Ben Santer, Hans-f. Graf
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.5116
http://www.gfdl.noaa.gov/reference/bibliography/2006/gls0601.pdf
Description
Summary:[1] Stratospheric sulfate aerosol particles from strong volcanic eruptions produce significant transient cooling of the troposphere and warming of the lower stratosphere. The radiative impact of volcanic aerosols also produces a response that generally includes an anomalously positive phase of the Arctic Oscillation (AO) that is most pronounced in the boreal winter. The main atmospheric thermal and dynamical effects of eruptions typical of the past century persist for about two years after each eruption. In this paper we evaluate the volcanic responses in simulations produced by seven of the climate models included in the model intercomparison conducted as part of the preparation of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). We consider global effects as well as the regional circulation effects in the extratropical Northern Hemisphere focusing on the AO responses forced by volcanic eruptions. Specifically we analyze results from the IPCC historical runs that simulate the evolution of the circulation over the last part of the 19th century and the entire 20th century using a realistic time series of atmospheric composition (greenhouse gases and aerosols). In particular, composite anomalies over the two boreal winters following each of the nine