SATELLITE- AND GROUND-BASED MULTI-VIEW PHOTOGRAMMETRIC DETERMINATION OF 3D CLOUD GEOMETRY

The quantitative 3D description of clouds is important for refined methods in nowcasting and the modeling of weather and climate. The EU project Cloudmap aimed at developing new methodologies for cloud product derivation (heights, type, optical thickness and effective droplet size). The follow-up pr...

Full description

Bibliographic Details
Main Authors: G. Seiz, D. Poli, A. Gruen, E. P. Baltsavias, A. Roditakis
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.5975
http://www.geod.ethz.ch/p02/general/persons/daniela_pub/2004_cloudmap_istanbul.pdf
Description
Summary:The quantitative 3D description of clouds is important for refined methods in nowcasting and the modeling of weather and climate. The EU project Cloudmap aimed at developing new methodologies for cloud product derivation (heights, type, optical thickness and effective droplet size). The follow-up project Cloudmap2 aimed at producing and exploiting value-added remote sensing data products on macroscopic (e.g. cloud-top height) and microscopic (e.g. cloud droplet radius) properties and water vapour distributions in order to characterize sub-grid scale processes within Numerical Weather Prediction Models (NWP) through validation and data assimilation. Earth Observation (EO) image data, provided by ESA, EUMETSAT and NASA are used to derive geophysical valueadded data products over Europe and the North Atlantic region, whenever possible in near real-time. Ground-based active (cloud radar, ceilometer) and passive (stereo imager system, IR camera) remote-sensing instruments are used to validate the EO-derived products as well as to merge them with the satellite-based results for a full 3D representation of the clouds. The role of our group in Cloudmap2 was to estimate cloud-top height (CTH) and wind (CTW) from stereo images from satellites and cloud-bottom height (CBH) and wind (CBW) from stereo images acquired by our newly developed ground-based stereo imager system. The cloud-top and-bottom results were then combined into a 3D model and visualized. This paper describes the results obtained in CTH and CTW estimation from ATSR2, AATSR, MISR and Meteosat-6/-7, including validation, the CBH and CBW results from the ground-based stereo imager system and a case study where the satellite- and ground-based 3D cloud boundary results are combined. * Corresponding author. 1.