Hydrological Sciences-Bulletin-dés Sciences Hydrologiques, 25, 3. 9/1980 Remote sensing of snow and ice

Abstract. Monitoring of snow and ice on the Earth's surface will require increasing use of satellite remote sensing techniques. These techniques are evolving rapidly. Active and passive sensors operating in the visible, near infrared, thermal infrared, and microwave wavelengths are described in...

Full description

Bibliographic Details
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 1979
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.133.5422
http://www.cig.ensmp.fr/~iahs/hsj/250/hysj_25_03_0307.pdf
Description
Summary:Abstract. Monitoring of snow and ice on the Earth's surface will require increasing use of satellite remote sensing techniques. These techniques are evolving rapidly. Active and passive sensors operating in the visible, near infrared, thermal infrared, and microwave wavelengths are described in regard to general applications and in regard to specific USA or USSR satellites. Meteorological satellites (frequent images of relatively crude resolution) and Earth resources satellites such as Landsat (less frequent images of higher resolution) have been used to monitor the areal extent of seasonal snow, but problems exist with cloud cover or dense forest canopies. Snow mass (water equivalent) can be measured from a low-flying aircraft using natural radioactivity, but cannot yet be measured from satellite altitudes. A combination of active and passive microwave sensors may permit this kind of measurement, but not until more is known about radiation scattering in snow. Satellite observations are very useful in glacier inventories, correcting maps of glacier extent, estimating certain mass balance parameters, and monitoring calving or surging glaciers. Ground ice is virtually impossible to monitor from satellites; ice on rivers and lakes can be monitored only with very high-resolution sensors. Microwave sensors, due to their all-weather capability (the ability to see through clouds) provide exciting data on sea ice distribution. Analysis of digital tapes of satellite data requires the archiving and scanning of huge amounts of data. Simple methods for extracting