Genetic structure among continental and island populations of gyrfalcons

Abstract Little is known about the possible influence that past glacial events have had on the phylogeography and population structure of avian predators in the Arctic and sub-Arctic. In this study, we use microsatellite and mitochondrial control region DNA variation to investigate the population ge...

Full description

Bibliographic Details
Main Authors: J E, F A J O H N S O N, † K, T K B U R N H A M , * ‡ W I L L I A, M A B U R N H A M, D A, D P M I N D E L L
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2007
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1090.7781
http://www.higharctic.org/wp-content/uploads/2011/12/Johnson-et-al.-2007.pdf
Description
Summary:Abstract Little is known about the possible influence that past glacial events have had on the phylogeography and population structure of avian predators in the Arctic and sub-Arctic. In this study, we use microsatellite and mitochondrial control region DNA variation to investigate the population genetic structure of gyrfalcons ( Falco rusticolus ) throughout a large portion of their circumpolar distribution. In most locations sampled, the mtDNA data revealed little geographic structure; however, five out of eight mtDNA haplotypes were unique to a particular geographic area (Greenland, Iceland, or Alaska) and the Iceland population differed from others based on haplotype frequency differences ( F ST ). With the microsatellite results, significant population structure ( F ST , principal components analysis, and cluster analysis) was observed identifying Greenland and Iceland as separate populations, while Norway, Alaska and Canada were identified as a single population consistent with contemporary gene flow across Russia. Within Greenland, differing levels of gene flow between western and eastern sampling locations was indicated with apparent asymmetric dispersal in western Greenland from north to south. This dispersal bias is in agreement with the distribution of plumage colour variants with white gyrfalcons in much higher proportion in northern Greenland. Lastly, because the mtDNA control region sequence differed by only one to four nucleotides from a common haplotype among all gyrfalcons, we infer that the observed microsatellite population genetic structure has developed since the last glacial maximum. This conclusion is further supported by our finding that a closely related species, the saker falcon ( Falco cherrug ), has greater genetic heterogeneity, including mtDNA haplotypes differing by 1-16 nucleotide substitutions from a common gyrfalcon haplotype. This is consistent with gyrfalcons having expanded rapidly from a single glacial-age refugium to their current circumpolar distribution. Additional ...