Quasi-Poisson vs. Negative Binomial Regression: How Should We Model Overdispersed Count data
Abstract. Quasi-Poisson and negative binomial regression models have equal numbers of parameters, and either could be used for overdispersed count data. While they often give similar results, there can be striking differences in estimating the effects of covariates. We explain when and why such diff...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Text |
Language: | English |
Published: |
2007
|
Subjects: | |
Online Access: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1082.3697 http://fisher.utstat.toronto.edu/reid/sta2201s/QUASI-POISSON.pdf |
Summary: | Abstract. Quasi-Poisson and negative binomial regression models have equal numbers of parameters, and either could be used for overdispersed count data. While they often give similar results, there can be striking differences in estimating the effects of covariates. We explain when and why such differences occur. The variance of a quasi-Poisson model is a linear function of the mean while the variance of a negative binomial model is a quadratic function of the mean. These variance relationships affect the weights in the iteratively weighted least-squares algorithm of fitting models to data. Because the variance is a function of the mean, large and small counts get weighted differently in quasi-Poisson and negative binomial regression. We provide an example using harbor seal counts from aerial surveys. These counts are affected by date, time of day, and time relative to low tide. We present results on a data set that showed a dramatic difference on estimating abundance of harbor seals when using quasiPoisson vs. negative binomial regression. This difference is described and explained in light of the different weighting used in each regression method. A general understanding of weighting can help ecologists choose between these two methods. |
---|