2004a The low-affinity glucocorticoid receptor regulates feeding and lipid breakdown in the migratory Gambel’s white-crowned sparrow Zonotrichia leucophrys gambelii

Role of the low-affinity glucocorticoid receptor in the regulation of behavior and energy metabolism in the migratory red knot Calidris canutus islandica Landys, MM; Piersma, T; Ramenofsky, M; Wingfield, JC; Wingfield, John C. Take-down policy If you believe that this document breaches copyright ple...

Full description

Bibliographic Details
Main Authors: T, Piersma, M, Ramenofsky, Jc, Wingfield, John C Wingfield, Mėta M Landys, Theunis Piersma, Marilyn Ramenofsky
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1075.7139
Description
Summary:Role of the low-affinity glucocorticoid receptor in the regulation of behavior and energy metabolism in the migratory red knot Calidris canutus islandica Landys, MM; Piersma, T; Ramenofsky, M; Wingfield, JC; Wingfield, John C. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. ABSTRACT Plasma corticosterone increases in association with migratory flight in the red knot Calidris canutus islandica, suggesting that corticosterone may promote migratory activity and/or energy mobilization in this species. This hypothesis is supported by general effects of glucocorticoids, which include stimulation of locomotion and the mobilization of energy depots. We experimentally examined the role of elevated corticosterone levels in the migratory red knot by comparing foraging behavior, flight frequency, and plasma metabolites between vehicle-injected controls and birds treated with RU486, an antagonist to the genomic low-affinity glucocorticoid receptor (GR). We predicted that RU486 treatment would interfere with energy mobilization. However, we expected no effects on flight activity because recent studies suggest that glucocorticoids affect locomotion through a nongenomic receptor. Finally, because glucocorticoids exert permissive effects on food intake, we postulated that RU486 treatment in the red knot would interfere with feeding. Results were consistent with the latter prediction, suggesting that the GR participates in the promotion of hyperphagia, the intense feeding state that is characteristic of the migratory condition. RU486 treatment did not affect flight fre- quency, suggesting that corticosterone may support migratory activity through a receptor other than the GR. Energy metabolism ...