Effect of the solar activity on the polarnight jet oscillation in the Northern and Southern Hemisphere winter

Abstract Effect of the modulation of the Polar-night jet oscillation (PJO) in winter time by the 11-year solar cycle is examined by the observational data from 1979 to 1999. It is found that zonal wind and the E-P flux anomalies appear commonly in the subtropical upper stratosphere in early winter o...

Full description

Bibliographic Details
Main Authors: Yuhji Kuroda, Kunihiko Kodera
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2002
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1075.5305
http://www.mri-jma.go.jp/Dep/cl/member/kuroda/kuroda_koderaJMSJ02.pdf
Description
Summary:Abstract Effect of the modulation of the Polar-night jet oscillation (PJO) in winter time by the 11-year solar cycle is examined by the observational data from 1979 to 1999. It is found that zonal wind and the E-P flux anomalies appear commonly in the subtropical upper stratosphere in early winter of both the Northern and Southern Hemispheres as a response to meridional UV heating contrast. These zonal wind anomalies are found to propagate poleward and downward with development as a seasonal march in both hemispheres. Although the length of the record is limited, it is suggested from the available data that the signal due to solar activity appears as the time evolution of the PJO triggered by solar forcing at early winter in both hemispheres. Differences in the signals between the Northern and Southern Hemispheres during late winter are explained in terms of the different characteristics of the PJO in each hemisphere. A significant temperature signal is also found to appear in the Southern Hemisphere in late winter under a solar maximum condition.