Structural Analysis of Casings in High Temperature Geothermal Wells in Iceland

ABSTRACT Large temperature changes are a central design concern in a diverse range of structures. Large and quick wellbore temperature changes in high temperature geothermal wells, e.g. during discharge and quenching of wells, produce large thermal stresses in the production casing which can cause c...

Full description

Bibliographic Details
Main Authors: Skúlason Gunnar, Magnús Þ Kaldal, Halldór Jónsson, Sigrún Nanna Pálsson, Karlsdóttir
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1055.4
Description
Summary:ABSTRACT Large temperature changes are a central design concern in a diverse range of structures. Large and quick wellbore temperature changes in high temperature geothermal wells, e.g. during discharge and quenching of wells, produce large thermal stresses in the production casing which can cause casing failures. The wellbore temperature change during discharge causes the wellhead to rise due to thermal expansion of the casings, since the wells are constructed of several concentric steel casings which are fully cemented to the top. The structural integrity of such casings is essential for the utilization of high temperature geothermal wells. The casings in connection to the wellhead form a structural system which involves nonlinear interaction of the contacting surfaces. Therefore, the structural system is analyzed numerically with the use of the nonlinear finite element method (FEM). Three FEM models are presented here with the purpose of evaluating the structural integrity of high temperature geothermal well casings. A load history is used in the analysis, consisting of transient wellbore temperature and pressure changes.