South America plate boundary in eastern Tierra del Fuego

[1] Global Positioning System (GPS) measurements provide the first direct measurement of plate motion and crustal deformation across the Scotia-South America transform plate boundary in Tierra del Fuego. This plate boundary accommodates a part of the overall motion between South America and Antarcti...

Full description

Bibliographic Details
Main Authors: R Smalley Jr, E Kendrick, M G Bevis, I W D Dalziel, F Taylor, E Lauría, R Barriga, G Casassa, E Olivero, E Piana
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1050.2006
http://www.ceri.memphis.edu/people/smalley/electronic%20pubs/2002GC000446.pdf
Description
Summary:[1] Global Positioning System (GPS) measurements provide the first direct measurement of plate motion and crustal deformation across the Scotia-South America transform plate boundary in Tierra del Fuego. This plate boundary accommodates a part of the overall motion between South America and Antarctica. The subaerial section of the plate boundary in Tierra del Fuego, about 160 km in length, is modeled as a two dimensional, strike-slip plate boundary with east-west strike. Along the Magallanes-Fagnano fault system, the principal fault of this portion of the plate boundary, relative plate motion is left-lateral strikeslip on a vertical fault at 6.6 ± 1.3 mm/year based on an assumed locking depth of 15 km. The site velocities on the Scotia Plate side are faster than the relative velocity by an additional 1-2 mm/yr, suggesting there may be a wider region of diffuse left-lateral deformation in southern Patagonia. The northsouth components of the velocities, however, do not support the existence of active, large-scale transpression or transtension between the South America and Scotia plates along this section of the plate boundary. Components: 9235 words, 7 figures, 2 tables.