Exploitation of intertidal feeding resources by the red knot Calidris canutus under megatidal conditions (Bay of Saint-Brieuc, France)

The feeding ecology of the red knot has been widely studied across its wintering range. Red knots mainly select bivalves and gastropods, with differences between sites due to variation in prey availability. The shorebird's diet is also influenced or controlled by the tidal regime. The aim of th...

Full description

Bibliographic Details
Main Authors: Anthony Sturbois, Alain Ponsero, Nicolas Desroy, Patrick Le Mao, Jérôme Fournier
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1045.1773
http://borea.scrol.net/sites/default/files/pdfs/sturbois_2015.pdf
Description
Summary:The feeding ecology of the red knot has been widely studied across its wintering range. Red knots mainly select bivalves and gastropods, with differences between sites due to variation in prey availability. The shorebird's diet is also influenced or controlled by the tidal regime. The aim of this paper is to demonstrate the adaptation of foraging red knots to the megatidal environment. The variation in their diet during tidal cycles was studied in the bay of Saint-Brieuc, a functional unit for this species. The method used combined macrofauna, distribution of foraging birds and diet data. Comparative spatial analyses of macrofauna and distribution of foraging red knots have shown that the bay's four benthic assemblages are exploited by birds. By analysing droppings, we highlighted that bivalve molluscs are the main component of their diet, as shown in most overwintering sites. Fifteen types of prey were identified and Donax vittatus was discovered to be a significant prey item. The relative proportion of each main prey item differs significantly depending on the benthic assemblage used to forage. All available benthic assemblages and all potential feeding resources can be used during a single tidal cycle, reflecting an adaptation to megatidal conditions. This approach develops accurate knowledge about the feeding ecology of birds which managers need in order to identify optimal areas for the conservation of waders based on the areas and resources actually used by the birds.