9Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS/Universite ́ Joseph Fourier – Grenoble 1

ABSTRACT. Results from the Heinrich Event INtercOmparison (HEINO) topic of the Ice-Sheet Model Intercomparison Project (ISMIP) are presented. ISMIP HEINO was designed to explore internal large-scale ice-sheet instabilities in different contemporary ice-sheet models. These instabilities are of intere...

Full description

Bibliographic Details
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1031.2620
http://homepages.vub.ac.be/%7Ephuybrec/pdf/Calov_JGlac_2010.pdf
Description
Summary:ABSTRACT. Results from the Heinrich Event INtercOmparison (HEINO) topic of the Ice-Sheet Model Intercomparison Project (ISMIP) are presented. ISMIP HEINO was designed to explore internal large-scale ice-sheet instabilities in different contemporary ice-sheet models. These instabilities are of interest because they are a possible cause of Heinrich events. A simplified geometry experiment reproduces the main characteristics of the Laurentide ice sheet, including the sedimented region over Hudson Bay and Hudson Strait. The model experiments include a standard run plus seven variations. Nine dynamic/thermodynamic ice-sheet models were investigated; one of these models contains a combination of the shallow-shelf (SSA) and shallow-ice approximation (SIA), while the remaining eight