傳染病流行病學之建模分析(1/3)

本三年計畫包括2009 pH1N1流感以及傳染病院內感染之建模分析兩大部份。 (1) 2009 pH1N1流感建模分析部份包括: (i) 與加拿大溫尼伯大學Dr. Seyed Moghadas,以加拿大Manitoba省在2009 春夏季 (5-8月) pH1N1疫情之詳細病例數據探討Manitoba省在疫情發生時的時間變化及年齡、種族 (當時Manitoba省加拿大原住民地區有發生重大疫情) 等因素對感染擴散之影響。(ii) 利用臺灣疾病管制局 (Taiwan CDC) 2009 臺灣地區pH1N1流感疫情數據及數學建模分析探討臺灣地區防治措施 (如施打疫苗、325停課政策) 對疫情之影響。...

Full description

Bibliographic Details
Main Author: 謝英恒(Hsieh, Ying-Hen)
Other Authors: 公共衛生學院公共衛生學系
Language:English
Published: 2012
Subjects:
Online Access:http://ir.cmu.edu.tw/ir/handle/310903500/44796
http://ir.cmu.edu.tw/ir/bitstream/310903500/44796/1/index.html
Description
Summary:本三年計畫包括2009 pH1N1流感以及傳染病院內感染之建模分析兩大部份。 (1) 2009 pH1N1流感建模分析部份包括: (i) 與加拿大溫尼伯大學Dr. Seyed Moghadas,以加拿大Manitoba省在2009 春夏季 (5-8月) pH1N1疫情之詳細病例數據探討Manitoba省在疫情發生時的時間變化及年齡、種族 (當時Manitoba省加拿大原住民地區有發生重大疫情) 等因素對感染擴散之影響。(ii) 利用臺灣疾病管制局 (Taiwan CDC) 2009 臺灣地區pH1N1流感疫情數據及數學建模分析探討臺灣地區防治措施 (如施打疫苗、325停課政策) 對疫情之影響。 (2) 傳染病院內感染建模分析: 與加拿大York大學Prof. Jianhong Wu以區塊模式(patch model) 探討傳染病院內感染及社區感染的空間擴散。模式之區塊包括掛號區、待診室、門診區及社區,以完整反應門診病人及醫院訪客在院內及社區感染擴散所扮演的角色。 The three-year project contains two main parts, modeling and analysis of 2009 pH1N1 pandemic influenza and nosocomial infection: (1) 2009 pH1N1 pandemic influenza modeling: (i) Collaboration with foreign colleagues in Canada on modeling of 2009 pH1N1, using the 2009 Canada pH1N1 epidemic data in the Province of Manitoba during the spring/summer of 2009 (May-August) to be provided by my Canadian collaborator, Seyed Moghadas of University of Winnipeg and Canada NRC Biodiagnostics Institute. Mathematical modeling and analysis will be carried out with this data to investigate issues such as temporal course of outbreak, age-specific attack rates, ethnic-specific illness outcome and presentation. Of special interest is the fact that substantial cases occurred during the summer in areas populated by the Canadian First Nations indigenous population in Manitoba. (ii) Modeling the impact of intervention measures such as vaccination and school closing policy during the 2009 pH1N1 epidemic in Taiwan. We will make use of the data from Taiwan Centers for Disease Control (Taiwan CDC) to construct mathematical models in order to quantify the impact of vaccination and the “325” school closing policy. (1) Modeling of nosocomial infection: Collaboration with Jianhong Wu of York University in Canada to investigate the impact of visitors at healthcare facilities on nosocomial transmission and the spread of disease to community. For this study, we will make use of a patch model with spatial spread focusing on the nosocomial transmission of outpatients and hospital visitors, including a patch for outpatient clinics where nosocomial transmission could occur and its potential spread to the community. Analysis and model fitting with nosocomial outbreaks in the literature will be carried out.