Isolation and characterization of novel marine Roseobacter clade members producing unique intracellular chromium-rich aggregates

The marine Roseobacter clade comprises one of the largest fractions of heterotrophic marine bacteria and accounts for about 16% of 16S rRNA gene clones retrieved from marine bacterioplankton. Their global distribution seems to be related to oceanic water masses and their environmental and biogeochem...

Full description

Bibliographic Details
Published in:Research in Microbiology
Main Authors: Gao, Jun, Pan, Hongmiao, Xiao, Tian, Barbier, Georges, Wang, Zifeng, Yue, Haidong, Sun, Song, Nitsche, Serge, Bernadac, Alain, Pradel, Nathalie, Wu, Long-Fei
Format: Article in Journal/Newspaper
Language:English
Published: 2006
Subjects:
Online Access:http://ir.qdio.ac.cn/handle/337002/5427
https://doi.org/10.1016/j.resmic.2006.04.005
Description
Summary:The marine Roseobacter clade comprises one of the largest fractions of heterotrophic marine bacteria and accounts for about 16% of 16S rRNA gene clones retrieved from marine bacterioplankton. Their global distribution seems to be related to oceanic water masses and their environmental and biogeochemical properties. In this study, we report isolation and characterization of novel Roseobacter clade members from the Yellow Sea, China. Phylogenetic analysis of 16S rRNA gene sequences reveals that the new isolates (YSCB1, YSCB2, YSCB3 and YSCB4) are closely related to uncultured Arctic seawater bacterium R7967 (99.57-100% sequence identity) and to the cultured Roseobacter sp. DSS-1 (99.27-99.76% sequence identity) isolated from the southeastern coastal water of the USA. Interestingly, YSCB strains possess unique intracellular chromium-containing aggregates. Therefore, these novel Roseobacter clade members exhibit a peculiar property in mineral biogeneration. (c) 2006 Elsevier SAS. All rights reserved. The marine Roseobacter clade comprises one of the largest fractions of heterotrophic marine bacteria and accounts for about 16% of 16S rRNA gene clones retrieved from marine bacterioplankton. Their global distribution seems to be related to oceanic water masses and their environmental and biogeochemical properties. In this study, we report isolation and characterization of novel Roseobacter clade members from the Yellow Sea, China. Phylogenetic analysis of 16S rRNA gene sequences reveals that the new isolates (YSCB1, YSCB2, YSCB3 and YSCB4) are closely related to uncultured Arctic seawater bacterium R7967 (99.57-100% sequence identity) and to the cultured Roseobacter sp. DSS-1 (99.27-99.76% sequence identity) isolated from the southeastern coastal water of the USA. Interestingly, YSCB strains possess unique intracellular chromium-containing aggregates. Therefore, these novel Roseobacter clade members exhibit a peculiar property in mineral biogeneration. (c) 2006 Elsevier SAS. All rights reserved.