Iodothyronine deiodinase gene analysis of the Pacific oyster Crassostrea gigas reveals possible conservation of thyroid hormone feedback regulation mechanism in mollusks

Iodothyronine deiodinase catalyzes the initiation and termination of thyroid hormones (THs) effects, and plays a central role in the regulation of thyroid hormone level in vertebrates. In non-chordate invertebrates, only one deiodinase has been identified in the scallop Chlamys farreri. Here, two de...

Full description

Bibliographic Details
Published in:Chinese Journal of Oceanology and Limnology
Main Authors: Huang Wen, Xu Fei, Qu Tao, Li Li, Que Huayong, Zhang Guofan
Format: Article in Journal/Newspaper
Language:English
Published: 2015
Subjects:
Online Access:http://ir.qdio.ac.cn/handle/337002/33094
https://doi.org/10.1007/s00343-015-4300-x
Description
Summary:Iodothyronine deiodinase catalyzes the initiation and termination of thyroid hormones (THs) effects, and plays a central role in the regulation of thyroid hormone level in vertebrates. In non-chordate invertebrates, only one deiodinase has been identified in the scallop Chlamys farreri. Here, two deiodinases were cloned in the Pacific oyster Crassostrea gigas (CgDx and CgDy). The characteristic in-frame TGA codons and selenocysteine insertion sequence elements in the oyster deiodinase cDNAs supported the activity of them. Furthermore, seven orthologs of deiodinases were found by a tblastn search in the mollusk Lottia gigantea and the annelid Capitella teleta. A phylogenetic analysis revealed that the deiodinase gene originated from an common ancestor and a clade-specific gene duplication occurred independently during the differentiation of the mollusk, annelid, and vertebrate lineages. The distinct spatiotemporal expression patterns implied functional divergence of the two deiodinases. The expression of CgDx and CgDy was influenced by L-thyroxine T4, and putative thyroid hormone responsive elements were found in their promoters, which suggested that the oyster deiodinases were feedback regulated by TH. Epinephrine stimulated the expression level of CgDx and CgDy, suggesting an interaction effect between different hormones. This study provides the first evidence for the existence of a conserved TH feedback regulation mechanism in mollusks, providing insights into TH evolution.