The mitochondrial genome of Euphausia superba (Prydz Bay) (Crustacea: Malacostraca: Euphausiacea) reveals a novel gene arrangement and potential molecular markers

Euphausiid krill are dominant organisms in the zooplankton population and play a central role in marine ecosystems. In this paper, we described the gene organization, gene rearrangement and codon usage in the mitochondrial genome of Euphausia superba Dana 1852 (sampling from Prydz Bay, PB). The mito...

Full description

Bibliographic Details
Published in:Molecular Biology Reports
Main Authors: Shen, Xin, Wang, Haiqing, Ren, Jianfeng, Tian, Mei, Wang, Minxiao
Format: Article in Journal/Newspaper
Language:English
Published: 2010
Subjects:
Online Access:http://ir.qdio.ac.cn/handle/337002/32753
https://doi.org/10.1007/s11033-009-9602-7
Description
Summary:Euphausiid krill are dominant organisms in the zooplankton population and play a central role in marine ecosystems. In this paper, we described the gene organization, gene rearrangement and codon usage in the mitochondrial genome of Euphausia superba Dana 1852 (sampling from Prydz Bay, PB). The mitochondrial genome of E. superba is more than 15,498 bp in length (partial non-coding region was not determined). Translocation of four tRNAs (trnL (1) , trnL (2) , trnW and trnI) and duplication of one tRNA (trnN) were founded in the mitochondrial genome of E. superba when comparing its genome with the pancrustacean ground pattern. To investigate the phylogenetic relationship within Malacostraca, phylogenetic trees based on currently available malacostracan mitochondrial genomes were built with the maximum likelihood and the Bayesian models. All analyses based on nucleotide and amino acid data strongly support the monophyly of Stomatopoda, Penaeidae, Caridea, and Brachyura, which is consistent with previous research. However, the taxonomic position of Euphausiacea within Malacostraca is unstable. From comparing the mitochondrial genome between E. superba (PB) and E. superba (sampling from Weddell Sea, WS), we found that nad2 gene contains maximal variation with 61 segregating sites, following by nad5 gene which has 12 segregating sites. Thus, nad2 and nad5 genes may be used as potential molecular markers to study the inherit diversity among different E. superba groups, which would be helpful to the exploitation and management of E. superba resources.