Characterization of the IRF2 proteins isolated from the deep-sea mussel Bathymodiolus platifrons and the shallow-water mussel Modiolus modiolus

Interferon regulatory factors (IRFs) are transcription factors that play important roles in immune defense, stress response, hematopoietic differentiation, and cell apoptosis. IRFs of invertebrate organisms and their functions remain largely unexplored. In the present study, for the first time new I...

Full description

Bibliographic Details
Published in:Developmental & Comparative Immunology
Main Authors: Huang, Baoyu, Meng, Jie, Yang, Mei, Xu, Fei, Li, Xinzheng, Li, Li, Zhang, Guofan
Format: Article in Journal/Newspaper
Language:English
Published: 2017
Subjects:
Online Access:http://ir.qdio.ac.cn/handle/337002/136726
https://doi.org/10.1016/j.dci.2017.01.015
Description
Summary:Interferon regulatory factors (IRFs) are transcription factors that play important roles in immune defense, stress response, hematopoietic differentiation, and cell apoptosis. IRFs of invertebrate organisms and their functions remain largely unexplored. In the present study, for the first time new IRFs (BpIRF2 and MmIRF2) were identified in the deep-sea mussel Bathymodiolus platifrons and the shallow-water mussel Modiolus modiolus. The open reading frame of BpIRF2 and MmIRF2 encoded putative proteins of 354 and 348 amino acids, respectively. Comparison and phylogenetic analysis revealed that both IRF2 proteins were new identified invertebrate IRF molecular. As transcriptional factors, both BpIRF2 and MmIRF2 could activate the interferon-stimulated response element-containing promoter and BpIRF2 could interact with itself. Moreover, both BpIRF2 and MmIRF2 were localized to the cytoplasm and nucleus. Collectively, these results demonstrated that IRF2 proteins might be crucial in the innate immunity of deep-sea and shallow-water mussels. (C) 2017 Published by Elsevier Ltd.