Ocean acidification stimulates alkali signal pathway: A bicarbonate sensing soluble adenylyl cyclase from oyster Crassostrea gigas mediates physiological changes induced by CO2 exposure

Ocean acidification (OA) has been demonstrated to have severe effects on marine organisms, especially marine calcifiers. However, the impacts of OA on the physiology of marine calcifiers and the underlying mechanisms remain unclear. Soluble adenylyl cyclase (sAC) is an acid -base sensor in response...

Full description

Bibliographic Details
Published in:Aquatic Toxicology
Main Authors: Wang, Xiudan, Wang, Mengqiang, Jia, Zhihao, Wang, Hao, Jiang, Shuai, Chen, Hao, Wang, Lingling, Song, Linsheng
Format: Article in Journal/Newspaper
Language:English
Published: 2016
Subjects:
Online Access:http://ir.qdio.ac.cn/handle/337002/136223
https://doi.org/10.1016/j.aquatox.2016.11.002
Description
Summary:Ocean acidification (OA) has been demonstrated to have severe effects on marine organisms, especially marine calcifiers. However, the impacts of OA on the physiology of marine calcifiers and the underlying mechanisms remain unclear. Soluble adenylyl cyclase (sAC) is an acid -base sensor in response to [HCO3-] and an intracellular source of cyclic AMP (cAMP). In the present study, an ortholog of sAC was identified from pacific oyster Crassostrea gigas (designated as CgsAC) and the catalytic region of CgsAC was cloned and expressed. Similar to the native CgsAC from gill tissues, the recombinant CgsAC protein (rCgsAC) exhibited [HCO3-]mediated cAMP-forming activity, which could be inhibited by a small molecule KH7. After 16 days of CO2 exposure (pH = 7.50), the mRNA transcripts of CgsAC increased in muscle, mantle, hepatopancreas, gill, male gonad and haemocytes, and two truncated CgsAC forms of 45 kD and 20 kD were produced. Cytosolic CgsAC could be translocated from the cytoplasm and nuclei to the membrane in response to CO2 exposure. Besides, CO2 exposure could increase the production of cAMP and intracellular pH of haemocytes, which was regulated by CgsAC (p < 0.05), suggesting the existence of a [HCO3-]/CgsAC/cAMP signal pathway in oyster. The elevated CO2 could induce an increase of ROS level (p < 0.05) and a decrease of phagocytic rate of haemocytes (p < 0.05), which could be inhibited by KH7. The results collectively suggest that CgsAC is an important acid -base sensor in oyster and the [HCO3-]/CgsAC/cAMP signal pathway might be responsible for intracellular alkalization effects on oxidative phosphorylation and innate immunity under CO2 exposure. The changes of intracellular pH, ROS, and phagocytosis mediated by CgsAC might help us to further understand the effects of ocean acidification on marine calcifiers. (C) 2016 Elsevier B.V. All rights reserved.