Arctic sea ice thickness changes in terms of sea ice age

In this study, changes in Arctic sea ice thickness for each ice age category were examined based on satellite observations and modelled results. Interannual changes obtained from Ice, Cloud, and Land Elevation Satellite (ICESat)-based results show a thickness reduction over perennial sea ice (ice th...

Full description

Bibliographic Details
Published in:Acta Oceanologica Sinica
Main Authors: Bi Haibo, Fu Min, Sun Ke, Liu Yilin, Xu Xiuli, Huang Haijun
Format: Article in Journal/Newspaper
Language:English
Published: 2016
Subjects:
Age
Online Access:http://ir.qdio.ac.cn/handle/337002/136182
https://doi.org/10.1007/s13131-016-0922-x
Description
Summary:In this study, changes in Arctic sea ice thickness for each ice age category were examined based on satellite observations and modelled results. Interannual changes obtained from Ice, Cloud, and Land Elevation Satellite (ICESat)-based results show a thickness reduction over perennial sea ice (ice that survives at least one melt season with an age of no less than 2 year) up to approximately 0.5-1.0 m and 0.6-0.8 m (depending on ice age) during the investigated winter and autumn ICESat periods, respectively. Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS)-based results provide a view of a continued thickness reduction over the past four decades. Compared to 1980s, there is a clear thickness drop of roughly 0.50 m in 2010s for perennial ice. This overall decrease in sea ice thickness can be in part attributed to the amplified warming climate in north latitudes. Besides, we figure out that strongly anomalous southerly summer surface winds may play an important role in prompting the thickness decline in perennial ice zone through transporting heat deposited in open water (primarily via albedo feedback) in Eurasian sector deep into a broader sea ice regime in central Arctic Ocean. This heat source is responsible for enhanced ice bottom melting, leading to further reduction in ice thickness.