The last glaciation in the headwater area of the Xiaokelanhe River, Chinese Altai: Evidence from Be-10 exposure-ages

The timing and extent of the last glaciation in the Altai Mountains are key to understanding climate change in this critical region. However, robust glacial chronologies are sparse across the Altai Mountains, especially in the Chinese Altai, impeding the correlation of glacial events and examination...

Full description

Bibliographic Details
Published in:Quaternary Geochronology
Main Authors: Dong, Guocheng, Zhou, Weijian, Fu, Yunchong, Zhang, Li, Zhao, Guoqing, Li, Ming
Format: Report
Language:English
Published: ELSEVIER SCI LTD 2020
Subjects:
Online Access:http://ir.ieecas.cn/handle/361006/12664
https://doi.org/10.1016/j.quageo.2020.101054
Description
Summary:The timing and extent of the last glaciation in the Altai Mountains are key to understanding climate change in this critical region. However, robust glacial chronologies are sparse across the Altai Mountains, especially in the Chinese Altai, impeding the correlation of glacial events and examination of the possible climate forcing mechanisms. Here, we report twenty new Be-10 exposure-ages obtained from two moraines in the headwater area of the Xiaokelanhe River, Chinese Altai. The inner latero-frontal moraine yields exposure-ages ranging from 16.60 +/- 1.00 to 20.41 +/- 1.15 ka (n = 5), reflecting a limited advance during the global Last Glacial Maximum (LGM). The morpho-stratigraphically older moraine remnants have exposure-ages of 14.36 +/- 0.94-38.98 +/- 2.23 ka (n = 15). The tentatively determined moraine age of 34.10 +/- 4.99 ka suggests that the local LGM in the Xiaokelanhe River likely occurred during Marine Isotope Stage (MIS) 3 or earlier. From a compilation of the 20 new, and 79 previously published exposure-ages, we observe at least three distinct glacial events during the last glacial, with the local LGM occurring prior to MIS 2. A comparison between the timing of glacial activities and climate proxies suggests a potential combination of summer solar insolation, North Atlantic climate oscillations, and atmospheric CO2 levels, as triggers for glacial movements during the last glacial cycle. Precipitation delivered by the mid-latitude westerlies may have also contributed to glacial advances during MIS 3. These correlations remain tentative however, due to limited chronological control.