Ordinal Distance Metric Learning for Image Ranking

Recently, distance metric learning (DML) has attracted much attention in image retrieval, but most previous methods only work for image classification and clustering tasks. In this brief, we focus on designing ordinal DML algorithms for image ranking tasks, by which the rank levels among the images...

Full description

Bibliographic Details
Main Authors: Li, Changsheng, Liu, Qingshan, Liu, Jing, Lu, Hanqing
Format: Article in Journal/Newspaper
Language:English
Published: 2015
Subjects:
DML
Online Access:http://ir.ia.ac.cn/handle/173211/7912
Description
Summary:Recently, distance metric learning (DML) has attracted much attention in image retrieval, but most previous methods only work for image classification and clustering tasks. In this brief, we focus on designing ordinal DML algorithms for image ranking tasks, by which the rank levels among the images can be well measured. We first present a linear ordinal Mahalanobis DML model that tries to preserve both the local geometry information and the ordinal relationship of the data. Then, we develop a nonlinear DML method by kernelizing the above model, considering of real-world image data with nonlinear structures. To further improve the ranking performance, we finally derive a multiple kernel DML approach inspired by the idea of multiple-kernel learning that performs different kernel operators on different kinds of image features. Extensive experiments on four benchmarks demonstrate the power of the proposed algorithms against some related state-of-the-art methods.