Sea Level Monitoring Using a GNSS-Based Tide Gauge

Global climate change is believed to result in the melting of large masses of ice in Polar Regions, bringing freshwater into the ocean, and changing the sea level. The traditional way to measure the sea level, by tide gauges, results in measurements relative to the Earth’s crust. However, in order t...

Full description

Bibliographic Details
Main Authors: Löfgren, Johan, Haas, Rüdiger, Johansson, Jan
Language:unknown
Published: 2009
Subjects:
Online Access:https://research.chalmers.se/en/publication/102006
Description
Summary:Global climate change is believed to result in the melting of large masses of ice in Polar Regions, bringing freshwater into the ocean, and changing the sea level. The traditional way to measure the sea level, by tide gauges, results in measurements relative to the Earth’s crust. However, in order to fully understand the sea level changes, absolute measurements (change in sea level in relation to the Earth’s center of gravity) are necessary, in particular in regions affected by post-glacial uplift, e.g., Fennoscandia. Satellite techniques, e.g., GNSS can be used to determine the motion of the Earth’s crust in relation to the center of gravity. By measuring reflected GNSS-signals from the sea surface, information of the sea level change can be obtained. Therefore a GNSS-based tide gauge is proposed.The proposed GNSS-based tide gauge installation consists of two antennas, one zenith looking right hand circular polarized (RHCP) and one nadir looking left hand circular polarized (LHCP), mounted back-to-back on a beam over the ocean. The RHCP antenna receives the GNSS-signals directly, whereas the LHCP antenna receives the signals reflected from the sea surface. Because of the additional path delay of the reflected signal, the LHCP antenna will appear to be a virtual GNSS-antenna located below the sea surface. When the sea level changes, the path delay of the reflected signal changes, thus the LHCP antenna will appear to be in a new position. The vertical position change corresponds to twice the sea level change, and therefore monitors sea level changes.Multiple satellites with different elevation and azimuth angles are observed each epoch and will give rise to reflected signals with different incidence angles from different directions. This means that the estimated sea level change can not be considered to originate from one specific point on the surface, but rather represents the change of an average surface formed by the reflection points.An experimental setup was installed in December 2008 over the ocean at ...