BL Lacertae are sources of the observed ultra-high energy cosmic rays

We calculate angular correlation function between ultra-high energy cosmic rays (UHECR) observed by Yakutsk and AGASA experiments, and most powerful BL Lacertae objects (quasars with jets directed along the line of sight). We find significant correlation at 2.5 degrees with the probability of chance...

Full description

Bibliographic Details
Published in:Journal of Experimental and Theoretical Physics Letters
Main Authors: Tinyakov, P.G., Tkachev, I.I.
Language:English
Published: 2001
Subjects:
Online Access:https://doi.org/10.1134/1.1434282
http://cds.cern.ch/record/489178
Description
Summary:We calculate angular correlation function between ultra-high energy cosmic rays (UHECR) observed by Yakutsk and AGASA experiments, and most powerful BL Lacertae objects (quasars with jets directed along the line of sight). We find significant correlation at 2.5 degrees with the probability of chance coincidence 2 x 10^{-5} and conclude that some of BL Lacertae are sources of the observed UHECR. We also see correlations at 10 degrees with the probability of coincidence 3 x 10^{-4}. A natural interpretation of this result is the existence of neutral and charged components of cosmic rays at highest energies, with charged primaries being deflected in extragalactic magnetic fields (EGMF) by an angle of order 10 degrees. The magnitude of EGMF deduced from here is of order 10^{-9} G assuming correlation length 1 Mpc. We calculate angular correlation function between ultra-high energy cosmic rays (UHECR) observed by Yakutsk and AGASA experiments, and most powerful BL Lacertae objects. We find significant correlations which correspond to the probability of statistical fluctuation less than $10^{-4}$, including penatly for selecting the subset of brightest BL Lacs. We conclude that some of BL Lacs are sources of the observed UHECR and present a list of most probable candidates.