Summary: Acoustic Detection of EHE Neutrinos

Neutrino astronomy was initiated primarily to search for TeV to PeV neutrinos from Active Galactic Nuclei, and the optical Cherenkov technique is well suited for this energy range. Interest has grown recently in detecting EeV neutrinos, particularly the ``cosmogenic'' neutrinos produced du...

Full description

Bibliographic Details
Main Author: Vandenbroucke, J
Language:English
Published: 2006
Subjects:
Online Access:http://cds.cern.ch/record/1003837
Description
Summary:Neutrino astronomy was initiated primarily to search for TeV to PeV neutrinos from Active Galactic Nuclei, and the optical Cherenkov technique is well suited for this energy range. Interest has grown recently in detecting EeV neutrinos, particularly the ``cosmogenic'' neutrinos produced during propagation of ultra-high-energy cosmic rays (UHECR) through the microwave background radiation. These neutrinos could be a powerful tool both to resolve the mystery of the UHECR sources and to test fundamental physics at the $\sim$100 TeV scale. The optical technique is not cost effective at these energies and newer techniques such as radio and acoustic detection are necessary. Accelerator experiments have confirmed the production of both types of signals from high-energy showers in various media, and quantitative measurements have confirmed theoretical descriptions of the signal strength, frequency content and pulse shape. While radio experiments have set the strongest limits so far, the acoustic method could contribute with an entirely independent signal production and detection mechanism and may be more effective at the highest energies. Efforts are underway to develop the acoustic method in various media around the world, with arrays operating in ocean water at the Bahamas, the UK, and the Mediterranean Sea; detectors prepared for deployment in the South Pole ice in the next year; and ideas for future acoustic detectors in salt domes and on Antarctica's Ross Ice Shelf. Regardless of which method is individually most sensitive, the best configuration may be to co-deploy arrays to combine the techniques and seek coincident detection of individual neutrino events.