Description
Summary:While many studies focus on the impacts of anthropogenic greenhouse gas on climate on the timescale of the next century, very few have investigated the impacts on a longer timescale, from tens of millennia to a million years. However, due to the long lifetime of CO2 in Earth's surface reservoirs, current anthropogenic emissions are expected to impact the climate on a much longer timescale than the coming century.The objective of this thesis is to broaden the scope of existing studies on the climate of the next million years, by revisiting some of their classical hypotheses. Existing studies rarely consider a partial or total melt of the Antarctic ice sheet, and assume that atmospheric CO2 concentrations come back to pre-industrial levels after hundreds of thousands years, due to silicate weathering.In this study, we explore potential evolutions of the Antarctic ice sheet.More precisely, I have investigated the long term equilibrium of the Antarctic ice sheet under different CO2 levels, using the Earth System model of intermediate complexity iLOVECLIM, coupled to the GRISLI Antarctic ice sheet model, by first applying increasing CO2 levels until the Antarctic ice sheet retreats entirely, and then applying decreasing CO2 levels until the ice sheet regrows. Our results show that the ice sheet exhibits a strong hysteresis behavior. Due to the inclusion of the albedo-melt feedback in our setup, the transition between a glaciated Antarctic ice sheet and an ice-free Antarctic and conversely is more brutal than in previous studies not including this feedback. The CO2 threshold for both Antarctic glaciation and deglaciation varies with the orbital configuration.Additionally, I have developed a conceptual model for the geological carbon cycle that includes multiple equilibria in order to reproduce multi million year cycles in the d13C that are coherent with the data. These potential multiple equilibria in the carbon cycle could lead to a widely different atmospheric CO2 concentration evolution on long timescales, compared ...