Drivers and surface signal of inter‐annual variability of boreal stratospheric final warmings

International audience Springtime stratospheric final warming (SFW) variability has been suggested to be linked to the tropospheric circulation, particularly over the North Atlantic sector. These findings, however, are based on reanalysis data that cover a rather short period of time (1979‐present)....

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Thiéblemont, Rémi, Ayarzagüena, B., Matthes, K., Bekki, Slimane, Abalichin, J., Langematz, U.
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Universidad Complutense de Madrid = Complutense University of Madrid Madrid (UCM), Instituto de Geociencias Madrid (IGEO), Universidad Complutense de Madrid = Complutense University of Madrid Madrid (UCM)-Consejo Superior de Investigaciones Cientificas España = Spanish National Research Council Spain (CSIC), Helmholtz Centre for Ocean Research Kiel (GEOMAR), Christian-Albrechts-Universität zu Kiel = Christian-Albrechts University of Kiel = Université Christian-Albrechts de Kiel (CAU), STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Freie Universität Berlin, Institut für Meteorologie Berlin, ANR-17-EURE-0006,IPSL-CGS,IPSL Climate graduate school(2017), ANR-10-LABX-0018,L-IPSL,LabEx Institut Pierre Simon Laplace (IPSL): Understand climate and anticipate future changes(2010)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://insu.hal.science/insu-02119415
https://insu.hal.science/insu-02119415/document
https://insu.hal.science/insu-02119415/file/Thieblemont_etal_2019_SFW_revised.pdf
https://doi.org/10.1029/2018JD029852
Description
Summary:International audience Springtime stratospheric final warming (SFW) variability has been suggested to be linked to the tropospheric circulation, particularly over the North Atlantic sector. These findings, however, are based on reanalysis data that cover a rather short period of time (1979‐present). The present work aims to improve the understanding of drivers, trends and surface impact of dynamical variability of boreal SFWs using chemistry‐climate models. We use multi‐decadal integrations of the fully coupled chemistry‐climate models CESM1(WACCM) and EMAC‐O. Four sensitivity experiments are analyzed to assess the impact of external factors; namely the Quasi‐Biennial Oscillation (QBO), sea surface temperature (SST) variability and anthropogenic emissions. SFWs are classified into two types with respect to their vertical development; i.e. events which occur first in the mid‐stratosphere (10‐hPa first SFWs) or first in the upper stratosphere (1‐hPa first SFWs). Our results confirm previous reanalysis results regarding the differences in the time evolution of stratospheric conditions and near‐surface circulation between 10‐hPa and 1‐hPa first SFWs. Additionally, a tripolar SST pattern is, for the first time, identified over the North Atlantic in spring months related to the SFW variability. Our analysis of the influence of remote modulators on SFWs revealed that the occurrence of major warmings in the previous winter favors the occurrence of 10‐hPa first SFWs later on. We further found that QBO and SST variability significantly affect the ratio between 1‐hPa first and 10‐hPa first SFWs. Finally, our results suggest that ozone recovery may impact the timing of the occurrence of 1‐hPa first SFWs.