Tropical cyclones in global high-resolution simulations using the IPSL model

International audience Abstract Despite many years of extensive research, the evolution of Tropical Cyclone (TC) activity in our changing climate remains uncertain. This is partly because the answer to that question relies primarily on climate simulations with horizontal resolutions of a few tens of...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Authors: Bourdin, Stella, Fromang, Sébastien, Caubel, Arnaud, Ghattas, Josefine, Meurdesoif, Yann, Dubos, Thomas
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Modélisation du climat (CLIM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Calcul Scientifique (CALCULS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2024
Subjects:
Online Access:https://hal.science/hal-04574670
https://hal.science/hal-04574670/document
https://hal.science/hal-04574670/file/s00382-024-07138-w.pdf
https://doi.org/10.1007/s00382-024-07138-w
Description
Summary:International audience Abstract Despite many years of extensive research, the evolution of Tropical Cyclone (TC) activity in our changing climate remains uncertain. This is partly because the answer to that question relies primarily on climate simulations with horizontal resolutions of a few tens of kilometers. Such simulations have only recently become accessible for most modeling centers, including the Institut Pierre-Simon Laplace (IPSL). Using recent numerical developments in the IPSL model, we perform a series of historical atmospheric-only simulations that follow the HighResMIP protocol. We assess the impact of increasing the resolution from $${\sim }\, 200$$ ∼ 200 to 25 km on TC activity. In agreement with previous work, we find a systematic improvement of TC activity with increasing resolution with respect to the observations. However, a clear signature of TC frequencies convergence with resolution is still lacking. Cyclogenesis geographical distributions also improve at the scale of individual basins. This is particularly true of the North Atlantic, where the agreement with the observed distribution is impressive at 25 km. In agreement with the observations, TC activity correlates with the large-scale environment and ENSO in that basin. By contrast, TC frequencies remain too small in the Western North Pacific at 25 km, where significant biases of humidity and vorticity are found compared to the reanalysis. Despite the few minor weaknesses we identified, our results demonstrate that the IPSL model is a suitable tool for studying TCs on climate time scales. This work thus opens the way for further studies contributing to our understanding of TC climatology.