Laboratory and Numerical Simulation of the Evolution of a River's Talik

International audience Experiments simulating the evolution of a river talik were performed in a cold room where a small channel carried flowing water through frozen saturated porous soil in a hydraulic flume. The sensitivity of thaw propagation to water temperature and velocity was determined to in...

Full description

Bibliographic Details
Published in:Permafrost and Periglacial Processes
Main Authors: Roux, Nicolas, Costard, François, Grenier, Christophe
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Modélisation Hydrologique (HYDRO), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://hal.science/hal-01584243
https://doi.org/10.1002/ppp.1929
Description
Summary:International audience Experiments simulating the evolution of a river talik were performed in a cold room where a small channel carried flowing water through frozen saturated porous soil in a hydraulic flume. The sensitivity of thaw propagation to water temperature and velocity was determined to indicate the relative importance of these controlling parameters. Two types of soils were investigated (sand and silty clay), corresponding to contrasting hydrological, thermal and mechanical behaviours. The experimental results show that the sensitivity to water temperature was much higher than that to water velocity for the ranges considered. The experiments were compared with results from one-dimensional numerical simulations to identify the thermal boundary conditions of the riverbed and to evaluate the capacity of the numerical code to represent the propagation of heat at depth. The results showed that the proper boundary conditions are of the Neumann type, where flux is expressed as a coefficient multiplied by the temperature difference between water and the soil surface. The value of this coefficient is evaluated as a function of flow velocity based on these experiments. As a first-order approximation, this coefficient is assumed to be constant when considering seasonal flow variations.