On the Southern Ocean CO 2 uptake and the role of the biological carbon pump in the 21st century

International audience We use a suite of eight ocean biogeochemical/ecological general circulation models from the Marine Ecosystem Model Intercomparison Project and Coupled Model Intercomparison Project Phase 5 archives to explore the relative roles of changes in winds (positive trend of Southern A...

Full description

Bibliographic Details
Published in:Global Biogeochemical Cycles
Main Authors: Hauck, Judith, Völker, Christoph, Wolf-Gladrow, Dieter A., Laufkötter, Charlotte, Vogt, Meike, Aumont, O., Bopp, Laurent, Buitenhuis, Erik T., Doney, Scott C., Dunne, John P., Gruber, Nicolas, Hashioka, T., John, Jasmin G., Le Quéré, Corinne, Lima, Ivan D., Nakano, Hideyuki, Séférian, Roland, Totterdell, Ian J.
Other Authors: Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine (AWI), Helmholtz-Gemeinschaft = Helmholtz Association, Department of Environmental Sciences, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich), Laboratoire de physique des océans (LPO), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Tyndall Centre for Climate Change Research, University of East Anglia Norwich (UEA), Woods Hole Oceanographic Institution (WHOI), NOAA Geophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration (NOAA), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Meteorological Research Institute Tsukuba (MRI), Japan Meteorological Agency (JMA), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), Met Office Hadley Centre (MOHC), United Kingdom Met Office Exeter
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://hal.science/hal-01575244
https://hal.science/hal-01575244/document
https://hal.science/hal-01575244/file/2015GB005140.pdf
https://doi.org/10.1002/2015GB005140
Description
Summary:International audience We use a suite of eight ocean biogeochemical/ecological general circulation models from the Marine Ecosystem Model Intercomparison Project and Coupled Model Intercomparison Project Phase 5 archives to explore the relative roles of changes in winds (positive trend of Southern Annular Mode, SAM) and in warming- and freshening-driven trends of upper ocean stratification in altering export production and CO 2 uptake in the Southern Ocean at the end of the 21st century. The investigated models simulate a broad range of responses to climate change, with no agreement on a dominance of either the SAM or the warming signal south of 44°S. In the southernmost zone, i.e., south of 58°S, they concur on an increase of biological export production, while between 44 and 58°S the models lack consensus on the sign of change in export. Yet in both regions, the models show an enhanced CO 2 uptake during spring and summer. This is due to a larger CO 2 (aq) drawdown by the same amount of summer export production at a higher Revelle factor at the end of the 21st century. This strongly increases the importance of the biological carbon pump in the entire Southern Ocean. In the temperate zone, between 30 and 44°S, all models show a predominance of the warming signal and a nutrient-driven reduction of export production. As a consequence, the share of the regions south of 44°S to the total uptake of the Southern Ocean south of 30°S is projected to increase at the end of the 21st century from 47 to 66% with a commensurable decrease to the north. Despite this major reorganization of the meridional distribution of the major regions of uptake, the total uptake increases largely in line with the rising atmospheric CO 2 . Simulations with the MITgcm-REcoM2 model show that this is mostly driven by the strong increase of atmospheric CO 2 , with the climate-driven changes of natural CO 2 exchange offsetting that trend only to a limited degree (∼10%) and with negligible impact of climate effects on anthropogenic CO 2 uptake ...