The response of US summer rainfall to quadrupled CO 2 climate change in conventional and superparameterized versions of the NCAR community atmosphere model

© 2014. American Geophysical Union. All Rights Reserved. Observations and regional climate modeling (RCM) studies demonstrate that global climate models (GCMs) are unreliable for predicting changes in extreme precipitation. Yet RCM climate change simulations are subject to boundary conditions provid...

Full description

Bibliographic Details
Published in:Journal of Advances in Modeling Earth Systems
Main Authors: Kooperman, GJ, Pritchard, MS, Somerville, RCJ
Format: Article in Journal/Newspaper
Language:English
Published: eScholarship, University of California 2015
Subjects:
Online Access:http://www.escholarship.org/uc/item/5zm152t9
Description
Summary:© 2014. American Geophysical Union. All Rights Reserved. Observations and regional climate modeling (RCM) studies demonstrate that global climate models (GCMs) are unreliable for predicting changes in extreme precipitation. Yet RCM climate change simulations are subject to boundary conditions provided by GCMs and do not interact with large-scale dynamical feedbacks that may be critical to the overall regional response. Limitations of both global and regional modeling approaches contribute significant uncertainty to future rainfall projections. Progress requires a modeling framework capable of capturing the observed regional-scale variability of rainfall intensity without sacrificing planetary scales. Here the United States summer rainfall response to quadrupled CO2 climate change is investigated using conventional (CAM) and superparameterized (SPCAM) versions of the NCAR Community Atmosphere Model. The superparameterization approach, in which cloud-resolving model arrays are embedded in GCM grid columns, improves rainfall statistics and convective variability in global simulations. A set of 5 year time-slice simulations, with prescribed sea surface temperature and sea ice boundary conditions harvested from preindustrial and abrupt four times CO2 coupled Community Earth System Model (CESM/CAM) simulations, are compared for CAM and SPCAM. The two models produce very different changes in mean precipitation patterns, which develop from differences in large-scale circulation anomalies associated with the planetary-scale response to warming. CAM shows a small decrease in overall rainfall intensity, with an increased contribution from the weaker parameterized convection and a decrease from large-scale precipitation. SPCAM has the opposite response, a significant shift in rainfall occurrence toward higher precipitation rates including more intense propagating Central United States mesoscale convective systems in a four times CO2 climate. Key Points Large-scale dynamics are critical to regional rainfall climate change responses Superparameterization captures expected increases in rain and storm intensity Extreme rain may be decoupled from key climate change drivers in standard GCMs