High temperature metamorphism in the conductive boundary layer adjacent to a rhyolite intrusion in the Krafla geothermal system, Iceland

A rhyolite magma body within the Krafla geothermal system that was encountered at a depth of 2.1km during drilling of the IDDP-1 borehole is producing high temperature metamorphism within a conductive boundary layer (CBL) in adjacent host rocks. Cuttings recovered during drilling within a few meters...

Full description

Bibliographic Details
Published in:Geothermics
Main Authors: Schiffman, P, Zierenberg, RA, Mortensen, AK, Frioleifsson, GO, Elders, WA
Format: Article in Journal/Newspaper
Language:English
Published: eScholarship, University of California 2014
Subjects:
Online Access:http://www.escholarship.org/uc/item/4px822mt
Description
Summary:A rhyolite magma body within the Krafla geothermal system that was encountered at a depth of 2.1km during drilling of the IDDP-1 borehole is producing high temperature metamorphism within a conductive boundary layer (CBL) in adjacent host rocks. Cuttings recovered during drilling within a few meters of the intrusive contact in IDDP-1 are mainly comprised of granoblastic hornfelses, the rock type which confirms the presence of the CBL at the base of the IDDP-1 bore hole. The two pyroxenes in these hornfelses record temperatures that are in the range of 800-950°C. The minimum heat flow across the CBL is 23Wm-2. Country rocks at distances beyond 30m of the intrusive contact are essentially unaltered, implying that they have been emplaced very recently and/or as yet unaffected by hydrothermal fluid flow. © 2012 Elsevier Ltd.