Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets

We present a detailed evaluation of the atmospheric sulfur cycle simulated in the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. The model simulations of SO2, sulfate, dimethylsulfide (DMS), and methanesulfonic acid (MSA) are compared with observations fr...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Chin, Mian, Savoie, Dennis L, Huebert, Barry J, Bandy, Alan R, Thornton, Donald C, Bates, Timothy S, Quinn, Patricia K, Saltzman, Eric S, De Bruyn, Warren J
Format: Article in Journal/Newspaper
Language:English
Published: eScholarship, University of California 2000
Subjects:
EOS
Online Access:http://www.escholarship.org/uc/item/48w6s38s
Description
Summary:We present a detailed evaluation of the atmospheric sulfur cycle simulated in the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. The model simulations of SO2, sulfate, dimethylsulfide (DMS), and methanesulfonic acid (MSA) are compared with observations from different regions on various timescales. The model agrees within 30% with the regionally averaged sulfate concentrations measured over North America and Europe but overestimates the SO2 concentrations by more than a factor of 2 there. This suggests that either the emission rates are too high, or an additional loss of SO2 which does not lead to a significant sulfate production is needed. The average wintertime sulfate concentrations over Europe in the model are nearly a factor of 2 lower than measured values, a discrepancy which may be attributed largely to the sea-salt sulfate collected in the data. The model reproduces the sulfur distributions observed over the oceans in both long-term surface measurements and short-term aircraft campaigns. Regional budget analyses show that sulfate production from SO2 oxidation is 2 to 3 times more efficient and the lifetimes of SO2 and sulfate are nearly a factor of 2 longer over the ocean than over the land. This is due to a larger free tropospheric fraction of SO2 column over the ocean than over the land, hence less loss to the surface. The North Atlantic and northwestern Pacific regions are heavily influenced by anthropogenic activities, with more than 60% of the total SO2 originating from anthropogenic sources. The average production efficiency of SO2 from DMS oxidation is estimated at 0.87 to 0.91 in most oceanic regions.