Oxygen isotope geochemistry of Laurentide ice-sheet meltwater across Termination I

© 2017 We present a new method that quantifies the oxygen isotope geochemistry of Laurentide ice-sheet (LIS) meltwater across the last deglaciation, and reconstruct decadal-scale variations in the δ18O of LIS meltwater entering the Gulf of Mexico between ∼18 and 11 ka. We employ a technique that com...

Full description

Bibliographic Details
Published in:Quaternary Science Reviews
Main Authors: Vetter, L, Spero, HJ, Eggins, SM, Williams, C, Flower, BP
Format: Article in Journal/Newspaper
Language:English
Published: eScholarship, University of California 2017
Subjects:
Online Access:http://www.escholarship.org/uc/item/292234zr
Description
Summary:© 2017 We present a new method that quantifies the oxygen isotope geochemistry of Laurentide ice-sheet (LIS) meltwater across the last deglaciation, and reconstruct decadal-scale variations in the δ18O of LIS meltwater entering the Gulf of Mexico between ∼18 and 11 ka. We employ a technique that combines laser ablation ICP-MS (LA-ICP-MS) and oxygen isotope analyses on individual shells of the planktic foraminifer Orbulina universa to quantify the instantaneous δ18Owatervalue of Mississippi River outflow, which was dominated by meltwater from the LIS. For each individual O. universa shell, we measure Mg/Ca (a proxy for temperature) and Ba/Ca (a proxy for salinity) with LA-ICP-MS, and then analyze the same O. universa for δ18O using the remaining material from the shell. From these proxies, we obtain δ18Owaterand salinity estimates for each individual foraminifer. Regressions through data obtained from discrete core intervals yield δ18Owvs. salinity relationships with a y-intercept that corresponds to the δ18Owatercomposition of the freshwater end-member. Our data suggest that from 15.5 through 14.6 ka, estimated δ18Owvalues of Mississippi River discharge from discrete core intervals range from −11‰ to −21‰ VSMOW, which is consistent with δ18O values from both regional precipitation and the low-elevation, southern margin of the LIS. During the Bølling and Allerød (14.0 through 13.3 ka), estimated δ18Owvalues of Mississippi River discharge from discrete core intervals range from −22‰ to −38‰ VSMOW. These values suggest a dynamic melting history of different parts of the LIS, with potential contributions to Mississippi River outflow from both the low-elevation, southern margin of the LIS and high-elevation, high-latitude domes in the LIS interior that were transported to the ablation zone. Prior to ∼15.5 ka, the δ18Owatervalue of the Mississippi River was similar to that of regional precipitation or low-latitude LIS meltwater, but the Ba concentration in the Mississippi basin was affected by changes in weathering within the watershed, complicating Ba-salinity relationships in the Gulf of Mexico. After 13 ka, our data suggest Mississippi River outflow did not influence surface salinity above our Gulf of Mexico Orca Basin core site. Rather, we hypothesize that open ocean conditions prevailed as sea level rose and the paleoshoreline at the southern edge of North America retreated northward.