Penetration depth of interferometric synthetic‐aperture radar signals in snow and ice

Digital elevation models of glaciated terrain produced by the NASA/Jet Propulsion Laboratory (JPL) airborne interferometric synthetic-aperture radar (InSAR) instrument in Greenland and Alaska at the C- (5.6 cm wave-length) and L-band (24-cm) frequencies were compared with surface elevation measured...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Rignot, Eric, Echelmeyer, Keith, Krabill, William
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2001
Subjects:
Online Access:https://escholarship.org/uc/item/5tx947cf
https://escholarship.org/content/qt5tx947cf/qt5tx947cf.pdf
https://doi.org/10.1029/2000gl012484
Description
Summary:Digital elevation models of glaciated terrain produced by the NASA/Jet Propulsion Laboratory (JPL) airborne interferometric synthetic-aperture radar (InSAR) instrument in Greenland and Alaska at the C- (5.6 cm wave-length) and L-band (24-cm) frequencies were compared with surface elevation measured from airborne laser altimetry to estimate the phase center of the interferometric depth, or penetration depth, δp. On cold polar firn at Greenland summit, δp = 9±2m at C- and 14±4m at L-band. On the exposed ice surface of Jakobshavn Isbrae, west Greenland, δp = 1±2 m at C- and 3±3 m at L-band except on smooth, marginal ice where δp = 15±5 m. On colder marginal ice of northeast Greenland, δp reaches 60 to 120 m at L-band. On the temperate ice of Brady Glacier, Alaska, δp is 4±2 m at C- and 12±6 m at L-band, with little dependence on snow/ice conditions. The implications of the results on the scientific use of InSAR data over snow/ice terrain is discussed.