Soluble adenylyl cyclase coordinates intracellular pH homeostasis and biomineralization in calcifying cells of a marine animal

Biomineralizing cells concentrate dissolved inorganic carbon (DIC) and remove protons from the site of mineral precipitation. However, the molecular regulatory mechanisms that orchestrate pH homeostasis and biomineralization of calcifying cells are poorly understood. Here, we report that the acid-ba...

Full description

Bibliographic Details
Main Authors: Chang, William Weijen, Thies, Angus B, Tresguerres, Martin, Hu, Marian Y
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2023
Subjects:
Online Access:https://escholarship.org/uc/item/4w7464nd
Description
Summary:Biomineralizing cells concentrate dissolved inorganic carbon (DIC) and remove protons from the site of mineral precipitation. However, the molecular regulatory mechanisms that orchestrate pH homeostasis and biomineralization of calcifying cells are poorly understood. Here, we report that the acid-base sensing enzyme soluble adenylyl cyclase (sAC) coordinates intracellular pH (pHi) regulation in the calcifying primary mesenchyme cells (PMCs) of sea urchin larvae. Single-cell transcriptomics, in situ hybridization, and immunocytochemistry elucidated the spatiotemporal expression of sAC during skeletogenesis. Live pHi imaging of PMCs revealed that the downregulation of sAC activity with two structurally unrelated small molecules inhibited pHi regulation of PMCs, an effect that was rescued by the addition of cell-permeable cAMP. Pharmacological sAC inhibition also significantly reduced normal spicule growth and spicule regeneration, establishing a link between PMC pHi regulation and biomineralization. Finally, increased expression of sAC mRNA was detected during skeleton remineralization and exposure to CO2-induced acidification. These findings suggest that transcriptional regulation of sAC is required to promote remineralization and to compensate for acidic stress. This work highlights the central role of sAC in coordinating acid-base regulation and biomineralization in calcifying cells of a marine animal.