Depleted Iceland mantle plume geochemical signature: Artifact of multicomponent mixing?

Rare high-3He/4He signatures in ocean island basalts (OIB) erupted at volcanic hotspots derive from deep-seated domains preserved in Earth's interior. Only high-3He/4He OIB exhibit anomalous 182W-an isotopic signature inherited during the earliest history of Earth-supporting an ancient origin o...

Full description

Bibliographic Details
Main Authors: Hanan, Barry B, Blichert‐Toft, Janne, Kingsley, Richard, Schilling, J‐G
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2000
Subjects:
Online Access:https://escholarship.org/uc/item/45p1x257
Description
Summary:Rare high-3He/4He signatures in ocean island basalts (OIB) erupted at volcanic hotspots derive from deep-seated domains preserved in Earth's interior. Only high-3He/4He OIB exhibit anomalous 182W-an isotopic signature inherited during the earliest history of Earth-supporting an ancient origin of high 3He/4He. However, it is not understood why some OIB host anomalous 182W while others do not. We provide geochemical data for the highest-3He/4He lavas from Iceland (up to 42.9 times atmospheric) with anomalous 182W and examine how Sr-Nd-Hf-Pb isotopic variations-useful for tracing subducted, recycled crust-relate to high 3He/4He and anomalous 182W. These data, together with data on global OIB, show that the highest-3He/4He and the largest-magnitude 182W anomalies are found only in geochemically depleted mantle domains-with high 143Nd/144Nd and low 206Pb/204Pb-lacking strong signatures of recycled materials. In contrast, OIB with the strongest signatures associated with recycled materials have low 3He/4He and lack anomalous 182W. These observations provide important clues regarding the survival of the ancient He and W signatures in Earth's mantle. We show that high-3He/4He mantle domains with anomalous 182W have low W and 4He concentrations compared to recycled materials and are therefore highly susceptible to being overprinted with low 3He/4He and normal (not anomalous) 182W characteristic of subducted crust. Thus, high 3He/4He and anomalous 182W are preserved exclusively in mantle domains least modified by recycled crust. This model places the long-term preservation of ancient high 3He/4He and anomalous 182W in the geodynamic context of crustal subduction and recycling and informs on survival of other early-formed heterogeneities in Earth's interior.