Acceleration and spatial rheology of Larsen C Ice Shelf, Antarctic Peninsula

The disintegration of several Antarctic Peninsula ice shelves has focused attention on the state of the Larsen C Ice Shelf. Here, we use satellite observations to map ice shelf speed from the years 2000, 2006 and 2008 and apply inverse modeling to examine the spatial pattern of ice-shelf stiffness....

Full description

Bibliographic Details
Main Authors: Khazendar, A, Rignot, E, Larour, E
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2011
Subjects:
Online Access:https://escholarship.org/uc/item/7qr5m554
Description
Summary:The disintegration of several Antarctic Peninsula ice shelves has focused attention on the state of the Larsen C Ice Shelf. Here, we use satellite observations to map ice shelf speed from the years 2000, 2006 and 2008 and apply inverse modeling to examine the spatial pattern of ice-shelf stiffness. Results show that the northern half of the ice shelf has been accelerating since 2000, speeding up by 15% between 2000 and 2006 alone. The distribution of ice stiffness exhibits large spatial variations that we link to tributary glacier flow and fractures. Our results reveal that ice down-flow from promontories is consistently softer, with the exception of Churchill Peninsula where we infer a stabilizing role for marine ice. We conclude that although Larsen C is not facing imminent collapse, it is undergoing significant change in the form of flow acceleration that is spatially related to thinning and fracture. Copyright © 2011 by the American Geophysical Union.