14C evidence that millennial and fast-cycling soil carbon are equally sensitive to warming

The Arctic is expected to shift from a sink to a source of atmospheric CO2 this century due to climate-induced increases in soil carbon mineralization1. The magnitude of this effect remains uncertain, largely because temperature sensitivities of organic matter decomposition2,3 and the distribution o...

Full description

Bibliographic Details
Main Authors: Vaughn, LJS, Torn, MS
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2019
Subjects:
Online Access:https://escholarship.org/uc/item/7p2373jq
Description
Summary:The Arctic is expected to shift from a sink to a source of atmospheric CO2 this century due to climate-induced increases in soil carbon mineralization1. The magnitude of this effect remains uncertain, largely because temperature sensitivities of organic matter decomposition2,3 and the distribution of these temperature sensitivities across soil carbon pools4 are not well understood. Here, a new analytical method with natural abundance radiocarbon was used to evaluate temperature sensitivities across soil carbon pools. With soils from Utqiaġvik (formerly Barrow), Alaska, an incubation experiment was used to evaluate soil carbon age and decomposability, disentangle the effects of temperature and substrate depletion on carbon mineralization, and compare temperature sensitivities of fast-cycling and slow-cycling carbon. Old, historically stable carbon was shown to be vulnerable to decomposition under warming. Using radiocarbon to differentiate between slow-cycling and fast-cycling carbon, temperature sensitivity was found to be invariant among pools, with a Q10 of ~2 irrespective of native decomposition rate. These findings suggest that mechanisms other than chemical recalcitrance mediate the effect of warming on soil carbon mineralization.