Rapid submarine melting of the calving faces of West Greenland glaciers

Widespread glacier acceleration has been observed in Greenland in the past few years associated with the thinning of the lower reaches of the glaciers as they terminate in the ocean. These glaciers thin both at the surface, from warm air temperatures, and along their submerged faces in contact with...

Full description

Bibliographic Details
Main Authors: Rignot, E, Koppes, M, Velicogna, I
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2010
Subjects:
Online Access:https://escholarship.org/uc/item/3hw228ts
Description
Summary:Widespread glacier acceleration has been observed in Greenland in the past few years associated with the thinning of the lower reaches of the glaciers as they terminate in the ocean. These glaciers thin both at the surface, from warm air temperatures, and along their submerged faces in contact with warm ocean waters. Little is known about the rates of submarine melting and how they may affect glacier dynamics. Here we present measurements of ocean currents, temperature and salinity near the calving fronts of the Eqip Sermia, Kangilerngata Sermia, Sermeq Kujatdleq and Sermeq Avangnardleq glaciers in central West Greenland, as well as ice-front bathymetry and geographical positions. We calculate water-mass and heat budgets that reveal summer submarine melt rates ranging from 0.7±0.2 to 3.9±0.8 m d -1. These rates of submarine melting are two orders of magnitude larger than surface melt rates, but comparable to rates of iceberg discharge. We conclude that ocean waters melt a considerable, but highly variable, fraction of the calving fronts of glaciers before they disintegrate into icebergs, and suggest that submarine melting must have a profound influence on grounding-line stability and ice-flow dynamics. © 2010 Macmillan Publishers Limited. All rights reserved.