Climatic drivers of Sphagnum species distributions

Peat mosses (genus Sphagnum) dominate most Northern mires and show distinct distributional limits in Europe despite having efficient dispersal and few dispersal barriers. This pattern indicates that Sphagnum species distributions are strongly linked to climate. Sphagnum-dominated mires have been the...

Full description

Bibliographic Details
Main Authors: Campbell, Charles, Granath, Gustaf, Rydin, Hakan
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2021
Subjects:
Online Access:https://escholarship.org/uc/item/1f70180p
Description
Summary:Peat mosses (genus Sphagnum) dominate most Northern mires and show distinct distributional limits in Europe despite having efficient dispersal and few dispersal barriers. This pattern indicates that Sphagnum species distributions are strongly linked to climate. Sphagnum-dominated mires have been the largest terrestrial carbon sinks in Europe over the last few millennia. Understanding the climatic drivers of Sphagnum species distributions is important for predicting the future functionality of peatlands. We used MaxEnt, with biologically relevant climatic variables, to model and clarify the current distributions of 45 Sphagnum species in Europe. We used a dataset of 238316 records from across Europe (30° to 90° N, -30° to 63° E; Sahara to the Arctic, Azores to Ural mountains). We used annual degree-days, annual water balance and their monthly standard deviations (i.e. seasonality) as climatic predictors over a range of spatial resolutions (from 10 to 200 km pixel size). With these climatic predictors, we produced reasonably accurate projections of the distribution of 45 species (overall AUC >0.8). Large pixels (100 and 200 km) resulted in loss of detail, but smaller pixels (10-50 km) performed well across fit measurements. Projected distributions at the 50 × 50 km resolution showed the largest resemblance to published distribution maps. Suitable climate for many Sphagnum species was associated with the northern, western and mountainous parts of Europe. We found that annual water balance was an important indicator of Sphagnum presence. Limits in relation to annual water balance were the same as reported by bioclimatic peatland models from North America. Most Sphagnum species were limited to annual degree-days between -5000 °C y-1 and 5000 °C y-1. Seasonality in both climate variables separated species, with degree-day seasonality having a stronger influence than water balance seasonality. High degree-day seasonality as a consequence of cold temperature sets a northern distribution limit to some species. The results suggest that the future of Sphagnum diversity in Europe is most strongly dependent on changes in water availability and in seasonal temperature variation.