Distinguishing the Quasi-decadal and multidecadal sea level and climate variations in the pacific: Implications for the ENSO-like low-frequency variability

Low-frequency sea level variations with periods longer than interannual time scales have been receiving much attention recently, with the aim of distinguishing the anthropogenic regional sea level change signal from the natural fluctuations. Based on the available sea level products, this study find...

Full description

Bibliographic Details
Main Authors: Lyu, K, Zhang, X, Church, JA, Hu, J, Yu, JY
Format: Article in Journal/Newspaper
Language:unknown
Published: eScholarship, University of California 2017
Subjects:
Online Access:https://escholarship.org/uc/item/0j7324t5
Description
Summary:Low-frequency sea level variations with periods longer than interannual time scales have been receiving much attention recently, with the aim of distinguishing the anthropogenic regional sea level change signal from the natural fluctuations. Based on the available sea level products, this study finds that the dominant low-frequency sea level mode in the Pacific basin has both quasi-decadal variations and a multidecadal trend reversal in the early 1990s. The dominant sea level modes on these two time scales have different tropical structures: a west-east seesaw in the tropical Pacific on the multidecadal time scale and a dipole between the western and central tropical Pacific on the quasi-decadal time scale. These two sea level modes in the Pacific basin are closely related to the ENSO-like low-frequency climate variability on respective time scales but feature distinct surface wind forcing patterns and subbasin climate processes. The multidecadal sea level mode is associated with the Pacific decadal oscillation (PDO) and Aleutian low variations in the North Pacific and tropical Pacific sea surface temperature anomalies toward the eastern basin, while the quasi-decadal sea level mode is accompanied by tropical Pacific sea surface temperature anomalies centered in the central basin along with the North Pacific part, which resembles the North Pacific Oscillation (NPO) and its oceanic expressions [i.e., the North Pacific Gyre Oscillation (NPGO) and the Victoria mode]. The authors further conclude that the ENSO-like low-frequency variability, which has dominant influences on the Pacific sea level and climate, comprises at least two distinct modes with different spatial structures on quasi-decadal and multidecadal time scales, respectively.