Description
Summary:Within mountain permafrost regions, rock glaciers refer to periglacial formations composed of a mixture of rock debris of varying size and frozen materials at depth. Among them, active rock glaciers exhibit surface displacement velocities of the order of m/year, reflecting deep-seated deformation dynamics governed by thermo-hydro-mechanical processes. Thus, their contribution to the sediment transfer that can be mobilized in torrential flows may be substantial, as well as the emerging natural risks linked to their destabilization. In support of kinematic monitoring, geotechnical and geophysical methods can be used to investigate a rock glacier at depth, but remain punctual and discontinuous. On the other hand, environmental seismology methods, already applied to landslide monitoring, allow continuous seismic recordings, reporting the state of the subsurface; the aim of this thesis is therefore to apply these passive seismic techniques to the monitoring of rock glaciers.Two active sites have thus been instrumented for several years: the Gugla rock glacier (Valais, Switzerland) and the Laurichard rock glacier (Hautes-Alpes, France). Several methods were applied to these seismic data: ambient noise correlation, microseismicity and spectral analysis. In general, the relative variation of the surface wave velocity (dv/v) shows significant seasonal variations: it reaches a maximum at the end of winter, before dropping during spring melt and reaching a minimum in summer. Similarly, the resonance frequencies specific to rock glaciers, that have been picked within the spectral content of the seismic ambient noise, follow the same seasonal pattern. We interpret these observations as the effect of freeze-thawing processes on the averaged stiffness of the rock glacier.In order to model the variation in the elastic parameters of the medium due to this freezing process, we used a three-phase Biot-Gassmann poroelastic model, considering the rock glacier as a solid porous matrix with pores filled with liquid water or ice. The ...