Quantification of the Atlantic deep ocean-circulation variations during the rapid climate changes of the last 40 ky

The last 40 ky, have been characterized by abrupt and high amplitude temperature changes (8 to 15 °C in less than 300 years) in Greenland and in the North Atlantic region, associated with drastic ocean and atmospheric circulation changes. The mechanisms behind these abrupt climate changes are still...

Full description

Bibliographic Details
Main Author: Missiaen, Lise
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Paris Saclay (COmUE), Claire Waelbroeck, Sylvain Pichat
Format: Doctoral or Postdoctoral Thesis
Language:French
Published: HAL CCSD 2019
Subjects:
Online Access:https://tel.archives-ouvertes.fr/tel-02275631
https://tel.archives-ouvertes.fr/tel-02275631v2/document
https://tel.archives-ouvertes.fr/tel-02275631v2/file/70537_MISSIAEN_2019_archivage.pdf
Description
Summary:The last 40 ky, have been characterized by abrupt and high amplitude temperature changes (8 to 15 °C in less than 300 years) in Greenland and in the North Atlantic region, associated with drastic ocean and atmospheric circulation changes. The mechanisms behind these abrupt climate changes are still debated. The objective of this thesis is to quantify the ocean circulation changes associated with these abrupt climate changes. In the first part of this thesis, I combined the information of three geochemical proxies in order to overcome the limitations of each proxy taken separately. The carbon isotopic ratios of the benthic foraminifers (δ13C and Δ14C), as well as the sedimentary Pa/Th ratio, have been measured in the North Atlantic sediment core SU90-08 (43°N, 30°W, 3080m). The proxies depict an apparently inconsistent situation over the last glacial maximum: the carbon isotopes indicate that the deep water mass was poorly ventilated while the Pa/Th evidence an active overturning cell. These observations question the type of signal recorded by each proxy. Besides, in order to quantify the circulation changes, a modeling approach is required. In the second part of this thesis, I have implemented the calculation of the Pa/Th in the climate model of intermediate complexity iLOVECLIM. The model is able to simulate the simultaneous evolution of the three proxies and has been used to decipher the multi-proxy response to abrupt circulation changes. The results show that the proxy response varies in the three main Atlantic water masses. In the deep (>2000m) western North Atlantic, the carbon isotopes response lags the Pa/Th response by a few hundreds of years, exemplifying/illustrating a possible decoupling between the different proxies. Au cours des derniers 40 ka, le Groenland et l'Atlantique Nord ont enregistré des oscillations de température rapides et de grande amplitude (8 à 15°C en à peine 300 ans) associées à de profondes modifications de la circulation océanique et atmosphérique. Les mécanismes à l’origine ...