Exploring environmental virus-host interactions and their relevance to microbial adaptation using CRISPRs

Interactions between the members of a microbial community can be a means of adaptation in the environment. Among the many interactions that take place in an ecosystem and have been seen to play a major role on microbial diversity and population dynamics is that of prokaryotic viruses and their hosts...

Full description

Bibliographic Details
Main Author: Sanguino Casado, Laura
Other Authors: Ampère (AMPERE), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ampère, Département Bioingénierie (BioIng), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-École Centrale de Lyon (ECL), Ecole Centrale de Lyon, Timothy Vogel, Catherine Larose
Format: Doctoral or Postdoctoral Thesis
Language:French
Published: HAL CCSD 2015
Subjects:
Online Access:https://tel.archives-ouvertes.fr/tel-01546401
https://tel.archives-ouvertes.fr/tel-01546401/document
https://tel.archives-ouvertes.fr/tel-01546401/file/TH_T2474_lsanguino.pdf
Description
Summary:Interactions between the members of a microbial community can be a means of adaptation in the environment. Among the many interactions that take place in an ecosystem and have been seen to play a major role on microbial diversity and population dynamics is that of prokaryotic viruses and their hosts. Viruses can also mediate the transfer of genetic material between prokaryotes (transduction), which could be a mechanism for rapid adaptation. In order to determine the potential impact of viruses and transduction, we need a better understanding of the dynamics of interactions between viruses and their hosts in the environment. Data on environmental viruses are scarce, and methods for tracking their interactions with prokaryotes are needed. Clustered regularly interspaced short palindromic repeats (CRISPRs), which contain viral sequences in bacterial genomes, might help document the history of virus-host interactions in the environment. Thus, this thesis aimed to explore virus-host interactions in a given environment through CRISPRs. Viruses in the cryosphere have been seen to be abundant, highly active and with broad host ranges. These characteristics could make viral transduction a key driver of adaptation in these environments. Public metagenomes created from environments over a range of temperatures were examined through sequence and CRISPR analysis. In this fashion, certain virus-host interaction dynamics were found to have a correlation with temperature. A workflow was then developed to create a network linking viruses and their hosts using CRISPR sequences obtained from metagenomic data from Arctic glacial ice and soil. The creation of CRISPR-based infection networks provided a new perspective on virus-host interactions in glacial ice. Moreover, we searched for transduction events in metagenomic data by looking for viral sequences containing microbial DNA. Further analysis of the viral sequences in the CRISPRs indicated that Ralstonia phages might be agents of transduction in Arctic glacial ice. Les ...