Effects of Mesoscale Dynamics on the Path of Fast-Sinking Particles to the Deep Ocean: A Modeling Study

International audience The gravitational sinking of organic particles is a vital component of the biological carbon pump. This sinking process is strongly modulated by the spatiotemporally varying eddy field, complicating the interpretation of particle flux measured by deep-moored sediment traps. By...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Wang, Lu, Gula, Jonathan, Collin, Jérémy, Mémery, Laurent
Other Authors: Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Océanographie Physique et Spatiale (LOPS), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Océan Dynamique Observations Analyse (ODYSSEY), Université de Bretagne Occidentale - UFR Sciences et Techniques (UBO UFR ST), Université de Brest (UBO)-Université de Brest (UBO)-Université de Rennes (UR)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT), ANR-17-EURE-0015,ISBlue,Interdisciplinary Graduate School for the Blue planet(2017), ANR-21-CE01-0027,APERO,Estimer la production, l'export et la reminéralisation de la matière marine biogène : de la surface à l'océan profond(2021)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://insu.hal.science/insu-03779393
https://insu.hal.science/insu-03779393/document
https://insu.hal.science/insu-03779393/file/JGR%20Oceans%20-%202022%20-%20Wang%20-%20Effects%20of%20Mesoscale%20Dynamics%20on%20the%20Path%20of%20Fast_E2_80_90Sinking%20Particles%20to%20the%20Deep%20Ocean%20A.pdf
https://doi.org/10.1029/2022JC018799
Description
Summary:International audience The gravitational sinking of organic particles is a vital component of the biological carbon pump. This sinking process is strongly modulated by the spatiotemporally varying eddy field, complicating the interpretation of particle flux measured by deep-moored sediment traps. By backtracking particles to 200 m depth based on the outputs of a realistic eddy-resolving simulation, we characterize the origins of particles collected at a long-term observatory site in the Northeast Atlantic and focus on the impact of mesoscale dynamics on particle transport. Our results show that mesoscale dynamics between 200 and 1,000 m control the statistical funnel. Over the long term, the horizontal sampling scales of traps are estimated as hundreds of kilometers, with containment radius ranging from 90 to 490 km, depending on sinking velocities. Particle travel time suggests that overall vertical flow acts to facilitate the export, with estimated deviations up to 1 ± 2 days for particles sinking at 50 m d -1 to 1,000 m. Statistical analyses of horizontal displacements reveal that mesoscale eddies at the site confine particle sources in a more local area. On average, particles in anticyclonic eddies sink faster to depth than expected from purely gravitational sinking, contrary to their counterparts in cyclonic eddies. The results highlight the critical role of mesoscale dynamics in determining particle transport in a typical open ocean region with moderate eddy kinetic energy. This study provides implications for the sampling design of particle flux measurements during cruises and the interpretation of deep-ocean mooring observations.