Wave Groups Observed in Pancake Sea Ice

International audience Ocean surface waves propagating through sea ice are scattered and dissipated. The net attenuation occurs preferentially at the higher frequencies, and thus the spectral bandwidth of a given wave field is reduced, relative to open water. The reduction in bandwidth is associated...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Thomson, Jim, Gemmrich, Johannes, Rogers, W. Erick, Collins, Clarence O., Ardhuin, Fabrice
Other Authors: Laboratoire d'Océanographie Physique et Spatiale (LOPS), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://insu.hal.science/insu-03683185
https://insu.hal.science/insu-03683185/document
https://insu.hal.science/insu-03683185/file/67763.pdf
https://doi.org/10.1029/2019JC015354
Description
Summary:International audience Ocean surface waves propagating through sea ice are scattered and dissipated. The net attenuation occurs preferentially at the higher frequencies, and thus the spectral bandwidth of a given wave field is reduced, relative to open water. The reduction in bandwidth is associated with an increase in the groupiness of the wave field. Using Surface Wave Instrument Float with Tracking buoy data from the 2015 Arctic Sea State experiment, bandwidth is compared between pancake ice and open water conditions, and the linkage to group envelopes is explored. The enhancement of wave groups in ice is consistent with the simple linear mechanism of superposition of waves with narrowing spectral bandwidth. This is confirmed using synthetic data. Nonlinear mechanisms, which have been shown as significant in other ice types, are not found to be important in this data set.