Assessing the impact of clouds on ground-based UV–visible total column ozone measurements in the high Arctic

International audience Zenith-Sky scattered light Differential Optical Absorption Spectroscopy (ZS-DOAS) has been used widely to retrieve total column ozone (TCO). ZS-DOAS measurements have the advantage of being less sensitive to clouds than direct-sun measurements. However, the presence of clouds...

Full description

Bibliographic Details
Published in:Atmospheric Measurement Techniques
Main Authors: Zhao, Xiaoyi, Bognar, Kristof, Fioletov, Vitali, Pazmino, Andrea, Goutail, Florence, Millán, Luis, Manney, Gloria, Adams, Cristen, Strong, Kimberly
Other Authors: Department of Physics Toronto, University of Toronto, Environment and Climate Change Canada, STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, NorthWest Research Associates (NWRA), Department of Physics Socorro, New Mexico Institute of Mining and Technology New Mexico Tech (NMT), Environmental Monitoring and Science Division of Alberta (EMSD), Alberta Government
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal-insu.archives-ouvertes.fr/insu-02104733
https://hal-insu.archives-ouvertes.fr/insu-02104733/document
https://hal-insu.archives-ouvertes.fr/insu-02104733/file/amt-12-2463-2019.pdf
https://doi.org/10.5194/amt-12-2463-2019
Description
Summary:International audience Zenith-Sky scattered light Differential Optical Absorption Spectroscopy (ZS-DOAS) has been used widely to retrieve total column ozone (TCO). ZS-DOAS measurements have the advantage of being less sensitive to clouds than direct-sun measurements. However, the presence of clouds still affects the quality of ZS-DOAS TCO. Clouds are thought to be the largest contributor to random uncertainty in ZS-DOAS TCO, but their impact on data quality still needs to be quantified. This study has two goals: (1) to investigate whether clouds have a significant impact on ZS-DOAS TCO, and (2) to develop a cloud-screening algorithm to improve ZS-DOAS measurements in the Arctic under cloudy conditions. To quantify the impact of weather, 8 years of measured and modelled TCO have been used, along with information about weather conditions at Eureka, Canada (80.05 • N, 86.41 • W). Relative to direct-sun TCO measurements by Brewer spectrophotometers and modelled TCO, a positive bias is found in ZS-DOAS TCO measured in cloudy weather, and a negative bias is found for clear conditions, with differences of up to 5 % between clear and cloudy conditions. A cloud-screening algorithm is developed for high latitudes using the colour index calculated from ZS-DOAS spectra. The quality of ZS-DOAS TCO datasets is assessed using a statistical uncertainty estimation model, which suggests a 3 %-4 % random uncertainty. The new cloud-screening algorithm reduces the random uncertainty by 0.6 %. If all measurements collected during cloudy conditions, as identified using the weather station observations, are removed, the random uncertainty is reduced by 1.3 %. This work demonstrates that clouds are a significant contributor to uncertainty in ZS-DOAS TCO and proposes a method that can be used to screen clouds in high-latitude spectra.