The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2

International audience Detailed studies of snow cover processes require models that offer a fine description of the snow cover properties. The detailed snowpack model Crocus is such a scheme, and has been run operationally for avalanche forecasting over the French mountains for 20 yr. It is also use...

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., Willemet, J.M.
Other Authors: Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes de la Neige (CEN), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal-insu.archives-ouvertes.fr/insu-00844645
https://hal-insu.archives-ouvertes.fr/insu-00844645/document
https://hal-insu.archives-ouvertes.fr/insu-00844645/file/gmd-5-773-2012.pdf
https://doi.org/10.5194/gmd-5-773-2012
Description
Summary:International audience Detailed studies of snow cover processes require models that offer a fine description of the snow cover properties. The detailed snowpack model Crocus is such a scheme, and has been run operationally for avalanche forecasting over the French mountains for 20 yr. It is also used for climate or hydrological studies. To extend its potential applications, Crocus has been recently integrated within the framework of the externalized surface module SURFEX. SURFEX computes the exchanges of energy and mass between different types of surface and the atmosphere. It includes in particular the land surface scheme ISBA (Interactions between Soil, Biosphere, and Atmosphere). It allows Crocus to be run either in stand-alone mode, using a time series of forcing meteorological data or in fully coupled mode (explicit or fully implicit numerics) with atmospheric models ranging from meso-scale models to general circulation models. This approach also ensures a full coupling between the snow cover and the soil beneath. Several applications of this new simulation platform are presented. They range from a 1-D standalone simulation (Col de Porte, France) to fully-distributed simulations in complex terrain over a whole mountain range (Massif des Grandes Rousses, France), or in coupled mode such as a surface energy balance and boundary layer simulation over the East Antarctic Ice Sheet (Dome C).